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Abstract. The theory of phonon-drag thermopower S, is given for a quasi-iD electron gas in 
a GaAs heterostructure. The coupling of the electrons to 3D phonons is considered through 
acoustic deformation potential and piezoelectric fields. An expression for S, is given which 
may be used for quasi-iD wires of different geometries. Numerical results are presented for 
both the screened and the unscreened value of S, for cylindrical wires in the temperature 
range 1-10 K. For temperatures T 3 2 K the major contribution to S, comes from the 
deformation potential scattering but for T < 2 K the contribution to S, due to piezoelectric 
scattering is significant. Screening reduces S, by 40%. S, increases as the density of electrons 
decreases and curves of S$T3 against Tshow maxima. The overall behaviour is dominated 
by the 3~ character of the phonon system and is similar to that found previously for a quasi- 
2D electron gas coupled to 3D phonons. 

1. Introduction 

In recent years there has been growing interest in the experimental (Fletcher et a1 1986, 
1988, Gallagher etal 1987, Ruf etal 1988) andtheoretical (CantrellandButcher 1987a, b, 
Smith and Butcher 1989, Lyo 1988) study of the thermopower S, of a quasi-2~ ( Q ~ D )  
electron gas in GaAs heterostructures and silicon inversion layers. Traditionally, the 
study of S has been used to probe electronic structure and scattering mechanisms in 
solids because it is sensitive to the energy dependence of the scattering mechanisms. At 
liquid-helium temperatures it is well known that there are two contributions to S. One 
is due to the diffusion of carriers through the specimen when a temperature gradient VT 
is present. This is the ‘diffusion’ thermopower S d .  The other arises because VTproduces 
a phonon momentum current which drags electrons with it as a result of electron-phonon 
interactions. This is the ‘phonon-drag’ thermopower S,. The total thermopower S may 
be written as 

The experimental measurements of S and its theoretical explanation in a QZD electron 
gas confirm the dominance of the contribution of S, to S at liquid-helium temperature 
until T falls below 1 K (Ruf et a1 1988). 

There is also growing interest in the study of the electronic structure and transport 
properties of quasi-ir, (QID) systems in which the electron gas is free to move in only one 
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direction and is confined in the other two. QiD electron gases have been produced in 
silicon MOSFETS (Skocpol et al 1982, Wheeler et al 1982, Kwasnick et al 1984, Warren et 
a1 1986) and in GaAs heterostructures (Berggrenetall986, van Houten eta1 1987, Cibert 
et al 1986, van Wees et al 1988). The diffusion thermopower of a QiD electron gas has 
been studied by Kearney and Butcher (1986) and Kubakaddi and Mulimani (1985). In 
this paper, we give the Boltzmann transport theory of S, for Q1D electrons in a GaAs 
wire coupled to 3D phonons in the surrounding medium by making appropriate modi- 
fications of the analysis of Cantrell and Butcher (1987a, b). Electrons are assumed to 
interact with acoustic phonons through both deformation potential and piezoelectric 
fields. A very recent calculation of S, for a Q ~ D  electron gas in GaAs heterostructures 
(Lyo 1988) shows that the contribution to S, from the piezoelectric scattering dominates 
for temperatures below 3 K. 

In 0 2, we give the Boltzmann transport theory of S,  in a form which is applicable to 
wires of different geometries. In 8 3, we give explicit expressions for S, for cylindrical 
wires. In 8 4, we present numerical results both with and without screening included. 

2. Boltzmann transport theory of S, 

We model our Q1D quantum wire as an electron system with periodic boundary conditions 
in the z direction and confined by potentials in the x and y directions. The confining 
potentials decide the geometry of the wire. We give the theory without specifying the 
form of the confining potential. Let us write the one-electron wavefunction Vkmn(x, y ,  z )  
in the QiD systems as 

where positive integers m and n specify the (mn)th ID sub-band. In (2), k is the wave- 
number in the z direction, 1 is the length of the wire and Qmn(x, y )  is the normalised sub- 
band wavefunction. The corresponding eigenvalue is 

qkmn(X, y ,  z> = (1)-1'2 exp(ikz)@m,(x, Y )  (2) 

where the E,, are the energies of the sub-band minima and &k is the free-electron energy 
in the z direction with effective mass m*. 

To calculate S, we recall that it is defined by the relation 

E = S dT/dz (4) 
under open-circuit conditions. Here d T/dz is the temperature gradient in the direction 
of the wire and E is the corresponding EMF.When the (total) current J in the wire does 
not vanish, we may write (Barnard 1972) 

J = - - ( L E E ) r z E  + ( L E T ) z z  dT/dz ( 5 )  
where (LEE)rz is the conductivity U and, from (4), (LET)zz = -OS .  Hence, when the EMF 
is reduced to zero by allowing current to flow, the current due to the temperature 
gradient is 

The current associated with the wavefunctions (2) is obtained by evaluating 
J = -US d T/dz. (6) 

Here / e l  is the magnitude of the electronic charge, fmn(k) the electron distribution 
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function and v,,(k) the group velocity of the electrons in the (mn)th sub-band. The 
factor of 2 accounts for spin. We obtain S by comparing (6) and (7)  and S, is that part of 
the S coming from the departure of the phonon distribution function from its thermal 
equilibrium value. 

To evaluate the current, fmn(k)  is obtained from the coupled electron and phonon 
Boltzmann equations, by linearising them, in the relaxation time approximation. 
Phonon-phonon interactions are assumed to dominate the scattering of phonons and 
are described by a phonon relaxation time z,(Q). It is also assumed that, at very low 
temperatures of our interest, the electron scattering is dominated by static defects and 
may be described by the electron relaxation time z , , ( E ~ ) .  The scattering due to the 
electron-phonon interaction is assumed to be weak as far as relaxation processes are 
concerned. However, it is the interaction which produces S, and is our main concern 
here. At  very low temperatures, we can neglect all but the acoustic phonons of energy 
fiw,, and wavevector Q = (qx ,  qy, q2)  in thesth mode. The electron-phonon interaction is 
due to the acoustic deformation potential and piezoelectric fields. The electron transition 
rate, due to either of these two scattering processes, at which the electron will transfer 
from state (m, n, k )  to (i, j ,  k’ )  by absorbing a phonon is given by 

P&(m, n ,  k ;  i, j ,  k ’ )  = (2n/fi)NQ, lM(m, n ,  k ;  i, j ,  , ’ ) I 2  
- - f i w Q s 1 6 k ’ , k + q , .  (8) 

Here M(m, n,  k ;  i, j ,  k’ )  is the matrix element of the screened electron-phonon inter- 
action. It is well known that only longitudinal modes (s = 1) are involved in the deform- 
ation potential scattering whereas both longitudinal and transverse (s = t) modes are 
involved in the piezoelectric scattering. The matrix element 

IM(m, n ,  k ;  i, j ,  k ’ ) I L  = [fiw~iE:/2pvu:&~(qI)]IFL,(qx, 4 y ) 1 2  (9) 

arises from deformation potential scattering and 

lM(m, n,  k ;  i , j ,  kr)/2piezo = [ (eh14)2/2~V~2(q,)I  

x I (f iw Q, / U ?  ) ( A  1 /e2 + (2f iw~t  / U  f ) ( A  t / Q 2  1 I I FL, ( q X ,  q y )  I (10) 
is due to piezoelectric scattering. The quantities p ,  V ,  E l  and hI4 are, respectively, 
the mass density, volume, acoustic deformation potential constant and piezoelectric 
constant, E ( q 2 )  is the dielectric function of the Q1D electron gas and the form factor 
[ F i n  ( q x ,  qY)l2 is given by 

2 
~ ~ i n ( q x ,  q y ) 1 2  = I j j ~ ‘ a < X t Y > ~ m n ( X , Y ) e X P [ i ( 4 x X  + 4yY)1 dxdy l  . (11) 

Finally, the quantities AI and A ,  are, respectively (Price 1982), 

A I  = 9q!.qZ/2Q6 (12) 
and 

At = (8q:q: + 461)/4Q6 

41 = 42 + 4;. 

(13) 

(14) 

with 

The linearised electron and phonon Boltzmann equations are solved for fmn(k)  with 
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(8) substituted for P&(m, n,  k ;  i, j ,  k ' )  and E = 0. We then calculated J from (7) and 
pick out the part arising from the perturbation of the phonon distribution by dT/dz. 
Then, by comparing (6) and (7), the S, for the quantum wire when several sub-bands 
are occupied is found to be 

x U sz [t mn ( & k ) U m o  ( k )  - t i j  ( ~ k '  > ~ i j  (k')l  (15) 

where U,, is the z component of the velocity of sound, P g ( m ,  n ,  k ;  i, j ,  k ' )  is P i :  with 
Ne, replaced by its thermal equilibrium value Nhs (given by the Bose distribution at 
temperature T) andfmn(Ek) is the Fermi-Dirac distribution function at T,  for a sub-band 
of energy &,,(k), with chemical potential cF.  

and the transverse dimensions of 
the wire, we evaluate (15) when only the ground sub-band is occupied. The phonon 
relaxation time is assumed to be limited by boundary scattering. Then t , (Q ,  s )  = L/u,, 
where L is the appropriate sample dimension and U ,  is an average velocity of sound 
which are taken to be independent of Q .  Since we are concerned only with the ground 
sub-band, we drop all the sub-band subscripts from (15). When this is done, we are left 
with a summation over k ' ,  k and Q .  The summation over k' is carried out making use of 
the Kronecker b-function in (8), i.e. k' is replaced by k + q2. The integration over k is 
carried out by noting that, for small hw,,, 

In order to study the dependence of S,  on T ,  

f o ( & k ) [ l  -fo(&k + h w Q s ) l  = {hwQs/[l - exp(-phwQs>l>s(ek - & F )  (16) 

where p = ( k B T ) - l .  This gives 

Moreover, the electron relaxation time due to short-range static defects has been cal- 
culated by Kearney and Butcher (1986) who find that z ( E ~ )  = C E ~ ' ~ ,  where C is inde- 
pendent of energy. We sum over Q by writing the summation over qx,  qy and qz.  The 
summation over q, is replaced by the integral 

and we use the Dirac &function in (8), dropping hoQS compared with eF in its argument, 
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to integrate over q2. The neglect of no,, compared with 
integration over q2 then gives 

is justified in 0 4 .  The 

where 

We have in (20) the general expression for S, which can be used to evaluate S,  for 
quantum wires of different geometries by appropriate choice of the ground sub-band 
wavefunction in ( 1  1) .  

3. S ,  for a cylindrical wire 

To illustrate the behaviour of S,, we consider a wire of circular cross section with radius 
R. For this system the ground sub-band wavefunction is (with m = 1, n = 0 in ( 2 ) )  

and the energy eigenvalue is 

= h2k:o/2m* (24) 
where r = (x2  + y2)’l2 and kl$ is the first zero of the Bessel function Jo(x) .  Using (23) 
in ( l l ) ,  we obtain the following expression: 

4E!Lm* k F  u1 x(1 + x 2 ) G ( y l ) I F ( 2 k F x ,  R)I2 dx 
(25) 

Sgd = n o 7 c 2 1 e / k ~ T 2 p h E 2 ( 2 k ~ )  lo sinh2 (PY1/2) 

for acoustic deformation potential scattering and 

(26) 
% G ( Y J x ~  + utG(yt)(8x2 + x 6 )  

sinh2(@yl/2) sinh2(Pyt/2) 

In deriving (25) and (26) we have replaced the summations over qx and qy by an 
integral in polar coordinates with x = ql/2kF. 

4. Numerical results and discussion 

In this section, we present numerical results for a Q1D cylindrical GaAs quantum wire 
obtained using the following material parameters: m* = 0.067mo, p = 5.3 g cmm3, u1 = 
5.1 x lo5 cm s-l, U, = 3.04 x lo5 cm s-l, E l  = 8.0 eV, h14 = 1.2 X lo7 V cm-’ and K, = 
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Figure 1. Plots of S, against T for a 
cylindrical quantum wire of radius 100 8, 
and electron density 106cm-': curve A, 
screened piezoelectric scattering; curve B , 
unscreened piezoelectric scattering; curve 
C, screened deformation potential scat- 
tering; curve D, unscreened deformation 
potential scattering; curve E, screened 
total S,; curve F, unscreened total S,. 

12.9. The sub-band energy minima are determined by the radius of the wire. The ground 
and first sub-band energy minima are of concern to us. For a wire of radius 100 A the 
energy separation of the ground and first sub-band is about 51 meV. The separation 
decreases with increasing R. Our expressions for S,  are for lying between the ground 
and first sub-band minima. For no = lo6 cm-', is 14 meV. We calculate S, from (25) 
and (26) for different no and R such that eF is always between the two lowest sub-band 
minima. It is to be noted that the approximation hw, + is valid for no = lo6 cm-' 
because hwa = 0.5 meV for Q = kF. When screening is ignored, we set &(2kF) = 1. To 
include screening, we use the temperature-dependent &(2kF) given by Fishman (1986): 

&(2kF) = 1 + (e2m*/;zKsh2k;R2) [I - ~ K , ( ~ ~ F R ) I , ( ~ ~ F R ) ]  ln(4.535&,/kBT) (27) 

where K, is the static dielectric constant of the medium. In (27), I,, and K,, are modified 
Bessel functions of the first and second kind, respectively. To be definite, we set L = 
0.3 mm in carrying out detailed calculations. 

In figure 1, we plot S ,  for no = 1.0 X lo6 cm-' and R = 100 A. We give screened and 
unscreened results for piezoelectric scattering (curves A and B), deformation potential 
scattering (curves C and D) and the sum of the two (curves E and F). Piezoelectric 
scattering makes a significant contribution over the entire temperature range and 
becomes larger than the contribution for deformation potential scattering for T < 2 K. 
For a Q ~ D  electron gas, Lyo (1988) finds that the piezoelectric scattering contribution is 
the larger of the two below 3 K. However, it should be remembered that, when T C 1 K, 
we must expect Sd to exceed S, (Kubakaddi and Mulimani 1985, Kearney and Butcher 
1986, Ruf et a1 1988). 

The effect of screening on S, is easy to include in the present calculations because it 
depends only on &(2kF) as given in (27) which is logarithmically dependent on T. For 
no = 1.0 x lo6 cm-', we find a 43% reduction in S, at 2 K and a 35% reduction at 10 K. 
We also note from (27) that &(2kF) increases as kF decreases. 
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Figure 2. Plots of S,/T3 against T: curve A, 
R = 100 A, no = 0.8 x 106cm-'; curve B, R = 
100 A, no = 1.0 x lo6 cm-'; curve C, R = 100 A, 
no = 1.2 x 106,cm-'; curve D, R = 150 A, no = 
1.0 x Wcm- ' .  

Figure 3. Plots of S, against R for no = 
1.0 x lo6 cm-': curve A, screened total S, at 3 K; 
curve B, unscreened total S, at 3 K ;  curve C, 
screened total S, at 5 K. 

The dependence of S ,  on T shown in figure 1 has a T 3  character at intermediate 
temperatures but a faster (slower) dependence on Tat  the lower (higher) temperatures 
in the range considered. Conse uently the plots of S,/T3 against T exhibit maxima as 

(curve B) and 1.2 x 106cm-' (curve C). We see that the maximum shifts to lower 
temperatures and becomes narrower as no decreases. A Q ~ D  electron gas exhibits similar 
behaviour. It arises from the movement of the dominant phonon wavevector in the 
integrands of (25) and (26) (Cantrell and Butcher 1986b). Curve D in figure 2 is shown 
for no = 1.0 X lo6 cm-' and R = 150 A. Comparing this with curve B for the same value 
of no and R = 100 A, we see a reduction in the magnitude of the peak but very little 
change in its location or width. 

The R dependence of S,  is exhibited in figure 3 for no = 1.0 X lo6 cm-' and T = 3 K 
for both screened (curve A) and unscreened (curve B) cases. Curve C shows the results 
of a screened calculation at 5 K. The screened results exhibit maxima which moves to 
lower R and broadens as T increases. This behaviour is entirely due to the screening. 
The unscreened curve B does not have a maximum. 

We note that the precise form of the function G(yJ in (22) is due to the particular 
energy dependence assumed for the electron relaxation time ( z ( E ~ )  = CE~'*). In the 
more general case when r (ek)  = CeP, , we find that 

shown in figure 2 for R = 100 x and no = 0.8 X 106cm-l (curve A), 1.0 X 106cm-' 

G(YJ = (1 + Y S / % ) P  + 1. (28) 
When p = 0, i.e. when T(E~) is constant, G(yJ = 2. Some researchers (Fishman 
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1986, Lee and Spector 1985) approximate the ground sub-band wavefunction @ ( x ,  y )  
by (nR2)-’’* inside the wire and zero outside it. We have made calculations using this 
simple approximation and find that it is seriously in error. The value of S, calculated in 
this way is 50% below that calculated using the exact wavefunction for the ground sub- 
band. 

We see from this discussion that the overall behaviour of S, for a QiD electron gas is 
very similar to that calculated previously for a Q2D electron gas (Cantrell and Butcher 
1986b, Lyo 1988). It is dominated in both cases by the 3D character assumed for the 
phonons. The calculations will need to be modified considerably if this assumption 
breaks down, In the Q ~ D  electron gas it yields results in excellent agreement with 
experimental data for both GaAs heterojunctions (Lyo 1988) and silicon MOSFETS (Smith 
and Butcher 1988). It should be possible to measure S ,  for arrays of weakly coupled 
quantum wires so that the theory developed here can also be tested against experimental 
data. 
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